Extensions 1→N→G→Q→1 with N=C422C2 and Q=D5

Direct product G=N×Q with N=C422C2 and Q=D5
dρLabelID
D5×C422C280D5xC4^2:2C2320,1375

Semidirect products G=N:Q with N=C422C2 and Q=D5
extensionφ:Q→Out NdρLabelID
C422C21D5 = C42.160D10φ: D5/C5C2 ⊆ Out C422C2160C4^2:2C2:1D5320,1374
C422C22D5 = C4223D10φ: D5/C5C2 ⊆ Out C422C280C4^2:2C2:2D5320,1376
C422C23D5 = C4224D10φ: D5/C5C2 ⊆ Out C422C280C4^2:2C2:3D5320,1377
C422C24D5 = C42.161D10φ: D5/C5C2 ⊆ Out C422C2160C4^2:2C2:4D5320,1379
C422C25D5 = C42.162D10φ: D5/C5C2 ⊆ Out C422C2160C4^2:2C2:5D5320,1380
C422C26D5 = C42.163D10φ: D5/C5C2 ⊆ Out C422C2160C4^2:2C2:6D5320,1381
C422C27D5 = C42.164D10φ: D5/C5C2 ⊆ Out C422C2160C4^2:2C2:7D5320,1382
C422C28D5 = C4225D10φ: D5/C5C2 ⊆ Out C422C280C4^2:2C2:8D5320,1383
C422C29D5 = C42.165D10φ: D5/C5C2 ⊆ Out C422C2160C4^2:2C2:9D5320,1384
C422C210D5 = C42.189D10φ: trivial image160C4^2:2C2:10D5320,1378

Non-split extensions G=N.Q with N=C422C2 and Q=D5
extensionφ:Q→Out NdρLabelID
C422C2.D5 = C42.159D10φ: D5/C5C2 ⊆ Out C422C2160C4^2:2C2.D5320,1373

׿
×
𝔽